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Abstract Asymmetric dispersal is a common trait among
populations, often attributed to heterogeneity and stochas-
ticity in both environment and demography. The cumulative
effects of population dispersal in space and time have been
described with some success by Van Kirk and Lewis’s ave-
rage dispersal success approximation (Bull Math Biol 59(1):
107–137 1997), but this approximation has been demon-
strated to perform poorly when applied to asymmetric
dispersal. Here we provide a comparison of different char-
acterizations of dispersal success and demonstrate how to
capture the effects of asymmetric dispersal. We apply these
different methods to a variety of integrodifference equation
population models with asymmetric dispersal, and examine
the methods’ effectiveness in approximating key ecological
traits of the models, such as the critical patch size and the
critical speed of climate change for population persistence.

Keywords Average dispersal success · Asymmetric
dispersal · Integrodifference equation · Moving habitat
model · Population persistence · Climate change

Introduction

Dispersal—defined by Trakhtenbrot et al. (2005) as the
movement of organisms, their propagules, or their genes
away from the source population—can have a profound
effect on the persistence and spread of populations through
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space and time. Spatial population models commonly
describe the dispersal process by means of a dispersal ker-
nel k(x, y), a probability density function that reflects the
likelihood of moving from the location y to the point x in a
single time step. Dispersal kernels have been derived from
observations of dispersal events for a variety of populations
and species, including trees (Clark et al. 1999; Nathan and
Muller-Landau 2000), plants (Willson 1993), birds (Veit and
Lewis 1996), and fish (Rodrı́guez 2010). Dispersal is often
represented as a symmetric process, under the assumption
that dispersal in any direction is equally likely (Vuilleumier
and Possingham 2006).

A clear and consistent pattern throughout the literature,
however, suggests that biological dispersal is a fundamen-
tally asymmetric spatial process: asymmetric dispersal due
to wind patterns have been observed in fungal pathogens
(Rieux et al. 2014), lichen spores (Werth et al. 2006), and
tree pollen (Austerlitz et al. 2007); ocean currents play a
similar role in affecting the dispersal of marine organisms
(Byers and Pringle 2006), and stream currents for aquatic
insects (Lutscher et al. 2010); population persistence in a
habitat shifting due to climate change can be characterized
by asymmetric dispersal (Zhou and Kot 2011; Bouhours
and Lewis 2016); elevational asymmetries in dispersal have
been observed in a variety of montane habitats (Willson
and Traveset 2000). Indeed, asymmetric dispersal seems
to be the rule rather than the exception. Although many
researchers readily acknowledge the significance of the pos-
sible effects of asymmetric dispersal, it appears uncommon
for asymmetric dispersal to be explicitly incorporated into
spatial population models, likely due to the mathematical
complexity involved, or a simple lack of data.

The concept of average dispersal success (ADS) has proven
to be a useful tool for addressing many of the issues that
arise from a scarcity of dispersal data and model complexity.
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Van Kirk and Lewis (1997) defined a population’s average
dispersal success S across a patch of habitat � as

S = 1

�

∫
�

∫
�

k(x, y) dx dy, (1)

the spatially averaged probability of remaining in � after
dispersal, assuming that the individual begins in �. Alterna-
tively, this can be interpreted as the proportion of individuals
beginning in � that remain in � after dispersing. ADS dis-
tinguishes individuals that disperse “locally” (i.e., within the
habitat patch) from those that disperse “farther away” (i.e.,
outside the habitat patch), and in doing so, provides a tool
for relating field data collected at a regional scale to popula-
tion dynamics at a larger scale (Fagan and Lutscher 2006).
Dispersal success has been used to address a variety of
questions in conservation ecology such as reserve network
design in marine systems (Baskett et al. 2007), metapopu-
lation dynamics (Fagan and Lutscher 2006), and population
dynamics of caterpillars (Hughes et al. 2015) and stream
insects (Vasilyeva et al. 2016).

As defined in Eq. 1, however, ADS has its limitations. In
particular, Van Kirk and Lewis (1997) explored S only in
the context of symmetric dispersal. Although they suggested
a method for generalizing S to asymmetric kernels, this
method has nonetheless been shown to provide an increas-
ingly poor approximation of the effects of dispersal for
increasingly asymmetric kernels (Reimer et al. 2016). This
limitation is unfortunate, because a great deal of insight
might be gleaned from studying the consequences of asym-
metric dispersal, and, given the aforementioned ubiquity
of the phenomenon, an accurate, generalizable method that
quantifies asymmetric dispersal success would apply to a
much a wider variety of ecological processes and issues of
considerable current interest.

One such issue is the effect of climate change on popu-
lation persistence. A large number of species are expected
to be unable to keep pace with the speed at which their
suitable habitat is shifting due to the effects of climate
change (Chen et al. 2011; Schloss et al. 2012). Fewer indi-
viduals are able to successfully disperse at higher climate
velocities, which leads to fewer individuals that are able to
successfully reproduce. In theory, beyond a certain critical
speed, the population cannot persist. Zhou and Kot (2011)
demonstrated how an asymmetric shifted dispersal kernel
can represent the effects of a habitat shifting due to climate
change. Another related concept is the threshold of habitat
size necessary for persistence. If a population’s habitat is
too small, individuals cannot reproduce rapidly enough to
offset the loss of individuals through dispersal, and the pop-
ulation will eventually die out. Ensuring that the amount of
available habitat is sufficient to sustain a population through
time is essential for successful reserve design. ADS is ill-
suited to address the question of critical climate speed, and

can only address critical habitat size if dispersal is assumed
to be symmetric.

In this paper, we demonstrate how to adapt ADS to more
accurately reflect the consequences of asymmetric disper-
sal in an integrodifference population model. In Section
Persistence criteria and integrodifference equations, we
introduce integrodifference equations (IDEs) and dis-
cuss their criteria for population persistence. In Section
Average dispersal success, we motivate dispersal success
in both a mathematical and biological context, and explore
(Van Kirk and Lewis 1997)’s original definition S in Eq. 1,
and a modification Ŝ proposed by Reimer et al. (2016)
that weights the integrand of S by population density.
In Section Geometric symmetrization, we introduce and
formalize the method of geometric symmetrization, a tech-
nique that uses a result of linear algebra to address the issue
of asymmetric kernels (Kot and Phillips 2015). Finally, in
Section Applications to integrodifference models, we apply
these three approaches to IDEs with asymmetric disper-
sal, and explore how each method can be used to estimate
the model’s critical patch size, critical shift speed, and
average population density at equilibrium, and how these
estimates compare with one another. The majority of this
paper uses shifted kernels to illustrate asymmetric disper-
sal, but the theory we develop extends to other types of
asymmetric kernels as well, which we explictly show in
Section Other types of asymmetry.

Persistence criteria and integrodifference
equations

The persistence of populations can often be characterized
as an eigenvalue problem (Leslie 1945; Caswell 2001). A
simple matrix population model, for example, is written as

nt+1 = Mnt , (2)

where nt is a vector of population densities of different
life stages, and M is a matrix that describes the rates of
transition from one life stage to another. The associated
eigenvalue equation of Eq. 2 is

λu = Mu. (3)

Persistence (and growth) of the population will occur when
the dominant eigenvalue λmax of M is greater than 1, and
the population will collapse when λmax is less than 1.

Integrodifference equations (IDE), by comparison, use a
spatially explicit approach to model a population as

Nt+1(x) =
∫ L

0
k(x, y)f [Nt(y)] dy, (4)

with population Nt(x) at location x and time t , growth
function f [Nt(y)], and dispersal kernel k(x, y). Since most
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choices of dispersal and growth functions make IDEs ana-
lytically intractable, it is not usually possible to obtain an
analytic steady-state solution, and we are unaware of any
such examples in the literature (although Zhou and Kot
2011 outline a scheme for approximating one example of an
IDE with a separable kernel). Instead, various approxima-
tion methods are commonly employed. Assuming no Allee
effects, and homogeneous and symmetric dispersal such that
k(x, y) = k(|x−y|), the corresponding eigenvalue equation
of Eq. 4 can be approximated by

λu(x) = R0

∫ L

0
k(x − y)u(y) dy, (5)

with R0 the net reproductive rate given by R0 = f ′(0),
eigenvalue λ and corresponding eigenfunction u(x̄) (Kot
and Schaffer 1986). Again, the dominant eigenvalue λmax

of the integral operator of Eq. 5 determines persistence: for
λmax > 1, the population will persist, and for λmax < 1 the
population will die out.

Zhou and Kot (2011) studied the persistence of a popu-
lation in a habitat shifting in space due to climate change,
described by the IDE

Nt+1(x) =
∫ L+ct

ct

k(x, y)f [Nt(y)] dy, (6)

with associated eigenvalue problem

λu(x̄) = R0

∫ L

0
k(x̄ + c − ȳ)u(ȳ) dȳ, (7)

where c is the speed of climate change, and x̄ = x − ct

and ȳ = y − ct . This equation is an example of the type
of eigenvalue problem of primary concern in this paper. An
equivalent formulation can be derived from the stationary
IDE in Eq. 4 assuming a shifted kernel k(x + c−y), and for
other types of asymmetric kernels as we will later see. For
the remainder of this paper, we will drop the bars on x̄ and
ȳ for notational convenience when referencing (7).

More recently, Kot and Phillips (2015) explored methods
for approximating λmax of Eq. 7, and found that in certain
cases,

λmax ≈ λS ≡ R0

L

∫ L

0

∫ L

0
k(x + c − y) dx dy (8)

= R0S, (9)

where S is the average dispersal success in Eq. 1. This
reflects a similar approximation (Lutscher and Lewis 2004)
derived for stage-structured populations.

To a first-order approximation, Eq. 9 demonstrates how
ADS succinctly relates to population persistence: the net
reproductive rate must be greater than 1/S for the pop-
ulation to persist. We note, however, that our kernel has
become asymmetric due to the spatial shift by c. Since we
have asserted that S provides a poor approximation in the
case of asymmetric dispersal, we might expect λS to diverge

from the true value of λmax for increasing c, and Kot and
Phillips (2015) indeed provide examples in support of our
expectations.

We will now provide a brief discussion of ADS, before
demonstrating how we can modify it to better capture the
effects of asymmetric dispersal.

Average dispersal success

We begin by establishing some basic terminology, fol-
lowing the notational conventions of Van Kirk and Lewis
(1997) and Lutscher and Lewis (2004). The dispersal kernel
k(x, y) is a probability density function that describes the
likelihood of an individual dispersing from the location y to
the location x by the next time step.

The dispersal success function s(y) describes the prob-
ability that an individual starting at location y will settle
within the domain � by the next time step, given by

s(y) ≡
∫

�

k(x, y) dx. (10)

Conversely, the redistribution function r(y) reflects the
probability that an individual starting within the domain �

will successfully disperse to location y by the next time step,
given by

r(y) ≡
∫

�

k(y, x) dx. (11)

When the kernel is symmetric we have k(x, y) = k(y, x),
and so r(y) = s(y).

Finally, the average dispersal success is the spatial aver-
age of the dispersal success function, defined by

S ≡ 1

|�|
∫

�

s(y) dy = 1

|�|
∫

�

∫
�

k(x, y) dx dy, (12)

where |�| represents the size of the domain.
The value of S reflects the proportion of a population in

� that will remain in � after a single dispersal event, assum-
ing that the population was initially distributed uniformly
throughout �. This uniformity is implicit in the fact that all
locations in � are weighted equally in the spatial average of
the dispersal success function s(y) or redistribution function
r(y). This naturally invites the question of how to quantify
the average dispersal success of a population that is hetero-
geneously distributed in �. Reimer et al. (2016) defined the
modified average dispersal success Ŝ, which weighs the dis-
persal success function by the distribution of individuals in
� as predicted by r(y), given by

Ŝ ≡ 1

|�|
∫

�

r(y)

S
s(y) dy. (13)
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The value of Ŝ reflects the proportion of individuals that
will remain in � after a single dispersal event, assuming an
initial distribution in � of r(y).

Under the right conditions, the solution of a population
model will converge to an equilibrium. In a spatial popula-
tion model with symmetric dispersal, this equilibrium often
closely resembles s(y) (Van Kirk and Lewis 1997); disper-
sal success is greatest at the center of � and lowest at its
edges, and individuals will end up distributed in � accord-
ingly. Provided a sufficient growth rate to replenish the
proportion of the population that is lost due to dispersal out-
side �, the population stay at this equilibrium indefinitely.
As such, when the kernel k(x, y) is symmetric, we may
reasonably use S and Ŝ to approximate the persistence of
a population over time. When k(x, y) is asymmetric, how-
ever, individuals disperse with a directional bias, and (by
assumption) this bias is persistent through time, affecting
each generation equally, and propagating with each suc-
cessive dispersal event. In this scenario, we might expect
that S and Ŝ fail to reflect population persistence, since the
long-term population equilibrium might be quite different
than the population after the first or second dispersal events
(Reimer et al. 2016).

Kot and Phillips (2015) described a method for approxi-
mating the effects of one such class of asymmetric dispersal
kernels, the shifted kernel k(x, y) = k(x + c − y), using
geometric symmetrization to construct a symmetric kernel
with the same qualitative properties as k(x, y). As we will
see, this method can be used to provide a lower bound on the
proportion of individuals remaining in � at population equi-
librium. In the following section, we outline the method,
beginning with some relevant results from linear algebra.

Geometric symmetrization

Schwenk (1986) identified a nonnegative, symmetric m×m

matrix G with dominant eigenvalue ρ(G) that provides a
lower bound for the dominant eigenvalue of a nonnegative,
asymmetric matrix A. The geometric symmetrization G of
A is defined by the property

G ◦ G = A ◦ AT , (14)

where ◦ is the Hadamard product symbolizing element-wise
multiplication, so that element gij = gji = √

aij aji is the
geometric mean of aij and aji . In particular, Schwenk found
that

ρ(G) ≤ ρ(A). (15)

A simple proof of this inequality can be found in Alpin and
Merikoski (2010).

For a symmetric matrix G, the Rayleigh quotient

R(G,u) ≡ uT Gu
uT u

(16)

is equal to ρ(G) when u is the eigenvector associated with
the dominant eigenvalue of G; for all other u, the Rayleigh
quotient will be less than ρ(G). Kolotilina (1993) used this
property to propose a simple, easily calculable lower bound
for ρ(G), given by

eT Ge
m

≤ ρ(G) ≤ ρ(A), (17)

where e = (1, . . . , 1)T , a vector of ones with length m.
Schwenk’s and Kolotilina’s results are relevant to us

for two reasons. First, we can approximate an asymmetric
dispersal kernel with a nonnegative, asymmetric matrix, a
common approach for numerical analysis. Kot and Phillips
(2015) detail one such method for discretizing k(x, y) into
an m × m matrix K. Applying this discretization to Eq. 7
yields the eigenvalue problem

λu = R0Ku. (18)

Second, the Rayleigh quotient approximation of ρ(A) can
likewise be used to approximate ρ(R0K), which is precisely
the dominant eigenvalue we desire to describe persistence.
Hence, these results provide us with a simple method for
estimating the eigenvalue that determines persistence in a
population with asymmetric dispersal.

Let us now formalize the notion of geometric sym-
metrization for a continuous kernel k(x, y). We start by
defining the geometric success function G(y) as

G(y) ≡
∫

�

√
k(x, y)k(y, x) dx. (19)

When k(x, y) is symmetric, G(y) = s(y) = r(y), since
k(x, y) = k(y, x) implies that

√
k(x, y)k(y, x) = k(x, y).

As k(x, y) becomes increasingly asymmetric, s(y) and r(y)

diverge from one another, and G(y) diverges from both
(Fig. 1). Averaging G(y) over � gives us the geometric
symmetrization of the average dispersal success S, defined
as

GS ≡ 1

|�|
∫

�

G(y) dy = 1

|�|
∫

�

∫
�

√
k(x, y)k(y, x) dxdy.

(20)

Kot and Phillips (2015) observed that GS is the continuous
form of the Rayleigh quotient in Eq. 17, i.e.,

GS = lim
m→∞

eT Ge
m

=
∫
�

∫
�

√
k(x, y)k(y, x) dx dy∫

�
1 dy

(21)

= 1

|�|
∫

�

∫
�

√
k(x, y)k(y, x) dx dy, (22)
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Fig. 1 Dispersal success function s(y), redistribution function r(y),
and geometric success function G(y) of a shifted Gaussian kernel with
σ = 3 on the domain � = [0, 10] for varying c. In a c = 0.5, and
s(y) and r(y) are relatively close in value in �. In b c = 4, and s(y)

and r(y) diverge from one another. S is the spatial average of s(y)

(equivalently, r(y)) across �, whereas GS is the spatial average of
G(y)

where m is again the number of discrete points in � and with
the elements of G given by gij = √

kij kji . This observa-
tion, along with Kolotilina’s result in Eq. 17, guarantees that
GS provides a lower-bound approximation of the dominant
eigenvalue of Eq. 6.

How might we interpret the value of GS biologically? If
we begin with an initial population N0 uniformly distributed
across �, then the spatial distribution of individuals after
one time step is described by r(y), and the average dispersal
success S reflects the proportion P1 = N1/N0 of population
left in � after one time step. Similarly, the modified average
dispersal success Ŝ reflects the proportion of population left
in � after one time step assuming an initial distribution of
r(y), or, equivalently, the ratio P2 = N2/N1 of populations
between the first and second time steps. Repeating the dis-
persal process over multiple time steps yields the sequence
P3, P4, P5, .... As t → ∞, eventual extirpation occurs if
Pt → 0. If the population converges to an equilibrium, then
the sequence is bounded below by GS. Thus, we can inter-
pret GS as an estimate of the proportion of individuals that

remain in � after dispersal when the population has reached
equilibrium. If the population dies out, then GS = 0; if
GS > 0, then the population is able to persist.

To illustrate this, we simulated the process of repeated
dispersal on a patch of length L = 10. We began with a
population N0(x) of N0 = 1 000 000 individuals distributed
uniformly across � = [0, 10]. Dispersal distances were ran-
domly drawn from a shifted Gaussian kernel (see Table 1)
with σ = 2, and added to N0(x) to simulate dispersal.
P1 was then calculated as the proportion of individuals left
inside of � after the dispersal event. The locations of the
individuals that dispersed successfully (i.e., stayed inside
the patch) were then randomly resampled to replace the
number of individuals lost due to dispersal, to give us our
new population N1(x), such that the population stayed con-
stant (i.e., N0 = N1). Resampling allowed us to iterate the
process of dispersal indefinitely without running out of indi-
viduals, while capturing the desired sequence of population
ratios P1, P2, P3, . . . that reflect the population losses due
to dispersal at each time step. We replicated this process for
61 different shift speeds ranging from c = 0 to c = 6. A
comparison of the proportion of individuals remaining in the
patch for the first eight time steps and the values of S, Ŝ,
and GS can be seen in Fig. 2.

Returning to our mathematical discussion, we note that
Kolotilina (1993) further proposed a sequence of lower
bounds that improve the approximation of ρ(A), given by

eT Ge
m

≤
(
eT G2e

m

)1/2

≤ · · · ≤
(
eT G2ke

m

)2−k

≤ ρ(A),

(23)

where Gn is the geometric symmetrization of An, such that

(gn)ij =
√

an
ij a

n
ji , with an

ij the ij -th element of An. It can

likewise be seen that

lim
m→∞

(
eT Gne

m

)n−1

=
(∫

�

∫
�

√
kn(x, y)kn(y, x) dx dy∫

�
1 dy

)n−1

(24)

=
(

1

|�|
∫

�

∫
�

√
kn(x, y)kn(y, x) dx dy

)n−1

, (25)

where kn(x, y) is the nth iterated kernel of k(x, y)

(Zabreyko et al. 2013), defined recursively such that

k1(x, y) = k(x, y), (26)

kn(x, y) =
∫

�

k(x, z)kn−1(z, y) dz. (27)
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Table 1 Discrete-time growth functions and dispersal kernels considered in this paper (Adapted from Reimer et al. 2016)

Growth functions

Beverton-Holt Nt+1 = R0Nt

1+ R0−1
K

Nt

Compensatory (Beverton and Holt 1957)

Logistic Nt+1 = Nt + rNt

(
1 − Nt

K

)
Overcompensatory (May and Oster 1976)

Ricker Nt+1 = Nt exp
[
r
(

1 − Nt

K

)]
Overcompensatory (Ricker 1954)

Dispersal kernels

Shifted Gaussian k(x, y) = 1√
2πσ 2

exp
(
− (x+c−y)2

2σ 2

)
(Lutscher et al. 2005; Kot and Phillips 2015)

Shifted Laplace k(x, y) = 1
2b

exp
(
−|x+c−y|

b

)
(Lutscher et al. 2005; Kot and Phillips 2015)

Shifted Cauchy k(x, y) =
[
πγ

(
1 +

(
x+c−y

γ

)2
)]−1

(Lutscher et al. 2005)

Asymmetric Laplace k(x, y) =
{

A exp(a1(x − y)), x ≤ y

A exp(a2(x − y)), x > y
(Lutscher et al. 2005)

The iterated kernel kn(x, y) is analogous to the iterated dis-
persal matrix Kn. The second iterated kernel k2(x, y) of the
shifted Laplace kernel, for example, is

k2(x, y) = 1

4b2

∫ L

0
e− |x+c−z|

b e− |z+c−y|
b dz (28)

= 1

8b

(
2e−s + 2se−s − e

−
(

x+y
b

)
− e

−
(

2L−x−y
b

))
,(29)

with s =
∣∣∣ x+2c−y

b

∣∣∣.
We may now generalize the formula for GS in Eq. 20 to

GnS ≡
(

1

|�|
∫

�

∫
�

√
k2n

(x, y)k2n
(y, x) dx dy

)2−n

, (30)

which provides increasingly tight lower bounds of the dom-
inant eigenvalue of Eq. 6 for increasing n. We note that
GS defined in Eq. 20 is equivalent to G0S in Eq. 30; for
the remainder of this paper, we will use the notation GS to
refer to G0S, and GnS to refer to any value of n other than
n = 0. For many parameter values, G0S provides a perfectly
adequate approximation of dispersal success.

In the next section, we will demonstrate that GS is a
far more useful tool for describing the effects of asym-
metric dispersal than either Van Kirk and Lewis’ average
dispersal success S or Reimer’s modified Ŝ (see Table 2 for
reference).

Applications to integrodifference models

Consider the integrodifference equation

Nt+1(x) =
∫

�

k(x, y)f [Nt(y)] dy, (31)

and assume that k(x, y) is asymmetric. With geometric sym-
metrization in hand, we are now equipped with a blueprint
for constructing a symmetric kernel

√
k(x, y)k(y, x) from

k(x, y). Furthermore, under certain assumptions on f and
k(x, y) (Zhou and Kot 2011), we know that the persistence
criteria of

Nt+1(x) =
∫

�

√
k(x, y)k(y, x)f [Nt(y)] dy. (32)
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Fig. 2 The proportions of eight generations of individuals remaining
in a patch of length 10, assuming shifted Gaussian dispersal with σ =
2, averaged over 100 simulations for each value of c. Each simulation
began with initial population N0 = 1 000 000 distributed randomly and
uniformly across �. After dispersal, each generation was bootstrapped
back to the initial population size, providing a sufficient growth rate
to repeat the process of dispersal indefinitely. The proportion remain-
ing after the first time step P1 = N1/N0 is indistinguishable from
the average dispersal success S. The ratio of populations between the
first and second time step P2 = N2/N1 is indistinguishable from
the modified average dispersal success Ŝ. The sequence of population
ratios between each successive time step P3, P4, P5, ... approaches the
geometric symmetrization GS of S
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Table 2 Dispersal success approximations considered in this paper

Average dispersal success S (12) Proportion of individuals staying in patch after

single dispersal event (Van Kirk and Lewis 1997)

Modified S Ŝ (13) Weights S by population density (Reimer et al. 2016)

Geometric symmetrization of S GnS (30) Proportion of individuals staying in patch after

dispersal event at equilibrium (Kot and Phillips 2015)

will be close in value to the persistence criteria of Eq. 31.
Although these two equations utilize different kernels, their
dominant eigenvalues are approximately equal, which deter-
mines the criteria for population persistence. Finally, we
have a simple method for approximating λmax for Eq. 31,
given by

λmax ≈ λGS ≡ R0

|�|
∫

�

∫
�

√
k(x, y)k(y, x) dx dy (33)

= R0GS, (34)

which we can use to better understand how different model
parameters relate to persistence. To illustrate, we turn again
to shifted kernels of the form k(x, y) = k(x + c − y).

Approximating the critical speed c∗

The critical speed c∗ beyond which the population can
no longer persist corresponds to the bifurcation value of
λmax = 1; when c > c∗, λmax < 1, the population will die
out.

For some dispersal kernels, the formulae for the vari-
ous dispersal success approximations are simple enough to
solve analytically. The shifted Laplace kernel (Table 1), for
example, can be plugged into Eq. 12 to get

S =
{

1 − c
L

− be−c/b

L
+ be−L/b

L
cosh

(
c
b

)
, c < L,

be−c/b

L

(
cosh

(
L
b

) − 1
)
, c ≥ L.

(35)

Likewise, Eq. 20 gives

GS =
{

1
L

[
be−L/b + e−c/b

(
L − c − b + cL

b
− c2

2b

)]
, c < L,

1
2b

e−c/bL, c ≥ L.

(36)

Using the approximation of λmax ≈ λS = R0S in Eq. 9,
we can substitute (35) into (9) and set λS = 1 to get

1 = R0

[
1 − c∗

L
− be−c∗/b

L
+ be−L/b

L
cosh

(
c∗

b

)]
. (37)

From this, we can derive an expression for R0 in terms of c∗
and the model parameters L and b,

R0 = L

L − c∗ − be−c∗/b + e−L/b cosh c∗
b

, (38)

assuming that c∗ < L. Similarly, the formula for λGS in
Eq. 34 for GS implies

R0 = L

be−L/b + e−c∗/b
(
L − c∗ − b + c∗L

b
− c∗2

2b

) . (39)

Applying L’Hôpital’s rule to Eq. 39 as L → ∞, this
equation predicts limiting curves of

R0 = ec∗/b

1 + c∗
b

. (40)

For a given growth rate R0, this curve approximates the
invasion speed p∗ of an IDE with an infinite domain,
described parametrically in Kot et al. (2004) as

p∗ = 2ub2

1 − u2b2
, (41)

R0 =
(

1 − u2b2
)

exp

(
2u2b2

1 − u2b2

)
, (42)

as can be seen in Fig. 3.
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For kernels less amenable to analytic evaluation, it
remains quite straightforward to use numerical optimization
to solve 1 = R0S, and likewise, the corresponding equations
for Ŝ and GS. To illustrate, we numerically calculated c∗
for IDEs discretized at m = 101 points on a patch of length
10, using R’s optimize function (R Core Team 2017) to
minimize the quantity

|ρ(R0K) − 1| (43)

for different values of R0, and compared this critical speed
curve with the critical speed curves derived by minimizing

|R0S − 1|, (44)

|R0Ŝ − 1|, (45)

|R0GnS − 1|, (46)

for S, Ŝ, and GnS, respectively, for various R0, with increas-
ingly accurate estimates of λmax provided by GnS for
increasing n. Figure 4 compares the results for three differ-
ent shifted kernels, using dispersal parameters σ = 1.48
(Gaussian), γ = 1 (Cauchy), b = 1.44 (Laplace) so that
each kernel has the same median absolute deviation when
c = 0 (Rousseeuw and Croux 1993). Figure 4 shows that
G0S more closely approximates the critical speed curve of
a numerically approximated IDE of the form found in Eq. 6
for the chosen parameter values than S or Ŝ, and this approx-
imation can be considerably improved with G1S. These
patterns are consistently observable across a wide range of
parameter values.

All other parameters being equal, GnS also correctly pre-
dict higher critical speeds for kernels with higher kurtosis κ ,
a measure of the “fatness” of tails. (We note that although
the Cauchy distribution does not have finite kurtosis on an
unbounded domain, its kurtosis is finite on the bounded
domain � = [0, L].) In contrast, kurtosis does not appear
to have a significant effect on estimates of c∗ derived with
S or Ŝ. Table 3 compares estimates of c∗ for an IDE with
L = 100, R0 = 1.8, and σ = 2 · 1.48 (Gaussian), γ = 2
(Cauchy), and b = 2 · 1.44 (Laplace). These estimates illus-
trate how long-distance dispersal can influence persistence:
the Gaussian kernel (κ = 3 for c = 0) has the thinnest tails
of the three, signifying a low probability of long-distance
dispersal events, and hence has the smallest critical speed.
The Cauchy kernel (κ ≈ 15 for c = 0) has the fattest tails
of the three, meaning that long-distance dispersal events are
much more likely, making it possible for the population to
persist at much higher shift speeds. The Laplace distribution
(κ = 6 for c = 0) falls somewhere in between.

Approximating the critical domain size L∗

Just as Eqs. 35 and 36 enabled us to explore the relationship
between the intrinsic growth rate R0 and the critical speed
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Fig. 4 Numerical approximations of critical speed curves for a a
shifted Gaussian kernel with σ = 1.48, b a shifted Cauchy kernel with
γ = 1, and c a shifted Laplace kernel with b = 1.44, and with L = 10

c∗, so may they help us determine the critical domain size
L∗. We use Eqs. 38 and 39 to plot L∗ as a function of c for
various values of R0 (Fig. 5).

Again, the same numerical techniques used for solving
1 = R0S (and the corresponding equations for Ŝ and GnS)
for c∗ apply just as readily to solving 1 = R0S for L∗.
Minimizing (43) for different values of c yields a critical

Table 3 Different estimates of the critical speed c∗ of an IDE with
L = 100, R0 = 1.8, σ = 2 · 1.48 (Gaussian), γ = 2 (Cauchy), and
b = 2 · 1.44 (Laplace). c∗ increases with the kurtosis of the kernel

Numeric S Ŝ G0S G1S G2S

Gaussian 3.2 40.0 30.8 3.1 3.2 3.2

Laplace 4.9 40.0 30.8 4.1 4.5 4.7

Cauchy 12.6 40.0 30.4 4.3 8.1 12.2
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Fig. 5 Numerical approximations of critical domain size for a shifted
Gaussian kernel with σ = 1.48, a shifted Cauchy kernel with γ = 1,
and a shifted Laplace kernel with b = 1.44, and with R0 = 1.8

domain size curve, and minimizing (44), (45), (46) simi-
larly yield critical domain size curves as a function of S,
Ŝ, and GnS, respectively. Figure 5 compares these critical
domain size curves for three different shifted kernels, again
using dispersal parameters σ = 1.48 (Gaussian), γ = 1
(Cauchy), b = 1.44 (Laplace), and with R0 = 1.8. As
with critical speed in Fig. 4, Fig. 5 illustrates that G1S most
closely approximates the critical domain size curve of the
numerically approximated IDE for the chosen parameter
values, and this can be observed for other parameter values
as well.

Approximating mean population density at equilibrium

Let us assume that (31) has a nontrivial equilibrium solution
N∗(x) such that

N∗(x) =
∫

�

k(x, y)f [N∗(y)] dy. (47)

By applying ADS to Eq. 47, we can approximate the
effects of k(x, y) with S by averaging the cumulative effects
of dispersal over the domain. This method reduces the equi-
librium solution of the IDE to its spatial average, which can
then be used to describe persistence more explicitly. This
technique is detailed in Lutscher and Lewis (2004), but we
outline the process here.

We begin by averaging the population distribution Nt(x)

over the spatial domain, which we denote as

Nt ≡ 1

|�|
∫

�

Nt(x) dx. (48)

Applying this average to both sides of Eq. 31 yields

1

|�|
∫

�

Nt+1(x) dx = 1

|�|
∫

�

∫
�

k(x, y)f [Nt(y)] dx dy.

(49)

The first-order Taylor expansion of f about Nt is

f [Nt(x)] ≈ f [Nt ] + f ′[Nt ]
(
Nt(x) − Nt

)
. (50)

If the difference between the nonzero equilibrium N∗(x)

and the spatial average Nt of Nt(x) is small, i.e., if the spa-
tial average Nt is close to equilibrium, then we may neglect
the linear term in Eq. 50 and approximate f by

f [Nt(x)] ≈ f [Nt ]. (51)

Substituting (51) into (49) yields

1

|�|
∫

�

Nt+1(x) dx ≈ f [Nt ] 1

|�|
∫

�

∫
�

k(x, y) dx dy,

(52)

which implies that Nt changes over time as

Nt+1 ≈ S · f [Nt ]. (53)

In this manner, we may approximate an IDE by averaging
over space, which separates the dispersal kernel and growth
function into individual, more digestible components. In the
case of a Beverton-Holt growth curve (Table 1), the spatial
average of the nontrivial equilibrium solution of Eq. 31 is
approximated by

N∗
S = K(SR0 − 1)

R0 − 1
. (54)

Note the similarities between this and the fixed point of the
nonspatial Beverton-Holt model, N∗ = K(R0−1)

R0−1 = K . Sim-
ilarly, the spatial averages of the logistic and Ricker growth
functions are approximated by

N∗
S = SK(1 + r) − K

Sr
, (55)

and

N∗
S = K

(
log S

r
+ 1

)
, (56)

respectively.
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As we’ve already seen in other examples, approximations
derived using S do not extend well to the case of asym-
metric dispersal. Indeed, it is quite easy to verify that (54),
(55), and (56) can substantially overestimate the mean equi-
librium N∗(x) of an IDE with asymmetric dispersal. We
may, however, derive similar estimates of N∗(x) in terms of
GS by applying similar reasoning to the integrodifference
model

Nt+1(x) =
∫

�

√
k(x, y)k(y, x)f [Nt(y)] dy. (57)

Following the same process as before, N now changes over
time as

Nt+1 ≈ GS · f [Nt ]. (58)

This yields the estimates

N∗
GS = K(GSR0 − 1)

R0 − 1
, (59)

N∗
GS = GSK(1 + r) − K

GSr
, (60)

N∗
GS = K

(
log GS

r
+ 1

)
, (61)

for the the spatial averages of the Beverton-Holt, logistic,
and Ricker growth functions, respectively. Similar estimates
may also be found approximating the equilibrium N ∗̂

S
in

terms of Ŝ.

Why might we expect (57) to have similar average pop-
ulation densities as Eq. 31 at equilibrium? To answer this
question, we consider the kernel k(x, y), and note that

k(x, y) = √
k(x, y)k(x, y) (62)

= √
k(x, y)k(y, x) + k(x, y) (k(x, y) − k(y, x)). (63)

Assuming the quantity k(x, y) (k(x, y) − k(y, x)) is small,
then applying the linear approximation

√
x + ε ≈ √

x + 1

2
√

x
ε (64)

to Eq. 63 yields

k(x, y) ≈ √
k(x, y)k(y, x) + 1

2

√
k(x, y)

k(y, x)
(k(x, y) − k(y, x)) (65)

≈ √
k(x, y)k(y, x). (66)

Thus, Eq. 57 can be seen as a lower order approximation of
Eq. 31. For shifted kernels, the quantity k(x, y) − k(y, x)

should be small for smaller values of c, since k(x, y) ≈
k(y, x) when k(x, y) is close to symmetric. For larger val-
ues of c, we already know that Eq. 57 has approximately
identical persistence criteria as Eq. 31, so we should expect
the two to have similar population densities as c approaches
the critical speed c∗, and equal densities for c ≥ c∗. In this

Fig. 6 A comparison of the
spatial averages of the nontrivial
equilibrium solutions of an IDE
with a variety of growth
functions and a variety of shifted
dispersal kernels, with
L = 10, K = 100, R0 = 1.8
(Beverton-Holt), r = 0.8
(logistic) and r = log(1.8)

(Ricker), and σ = 1.48
(Gaussian), γ = 1 (Cauchy),
and b = 1.44 (Laplace)
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regard, we may reasonably expect that Eqs. 59, 60, and 61
provide more accurate estimates of mean population density
for increasing c than Eqs. 54, 55, and 56.

In fact, we may further improve these estimates by calcu-
lating one more iteration of the integrodifference equation
in Eq. 31. Taking N∗

GS as our estimate of N∗(x), we
get

N∗(x) =
∫

�

k(x, y)f [N∗(x)] dy (67)

≈
∫

�

k(x, y)f [N∗
GS] dy (68)

=
∫

�

k(x, y)
N∗

GS

GS
dy (69)

= N∗
GS

GS

∫
�

k(x, y) dy. (70)

Recognizing the integral in Eq. 70 as the redistribution
function r(x) from Eq. 11, we infer

N∗(x) ≈ N∗
GS

GS
r(x). (71)

This equation is similar in form to the redistribution approx-
imation described by Lutscher and Lewis (2004), defined in
terms of S as

N∗(x) ≈ N∗
S

r(x). (72)

Finally, averaging (71) across the domain yields the
estimate

N∗(x) ≈ N∗
GS

GS

∫
�

r(x) dx (73)

= S

GS
N∗

GS. (74)

We denote the approximation in Eq. 74 as N∗
I , or more

generally for GnS as

N∗
In

= S

GnS
N∗

GnS. (75)

Figure 6 shows estimates of the spatial average of the non-
rivial equilibrium solution N∗

S , N ∗̂
S

, N∗
G2S

, and N∗
I2

for a
variety of growth functions, dispersal kernels, and shift
speeds. We quantified the accuracy of these estimates for
two different domain sizes using the root-mean-square error
(RMSE) between each estimate and the spatial average of
the numerically calculated IDE equilibrium solution, calcu-
lated for equally spaced values of c ranging from c = 0 to
c = c∗

all , the smallest value of c for which all four estimates
predicted extinction. N∗

I2
provided the lowest RMSE in all

but one scenario (Table 4), suggesting that it is the most
accurate approximation of the four.

Figure 7 illustrates a more extreme example of Fig. 6,
considering a shifted Cauchy distribution with L = 100,
R0 = 1.8, and γ = 2. In this case, patch size is considerably

Table 4 Root-mean-square error between the spatial average of the
numerically calculated IDE equilibrium solution and various approxi-
mations of the spatial average

Scenario Root-mean-square error

L Dispersal Growth m N∗
S N ∗̂

S
N∗

G2S N∗
I2

10 Gaussian BH 89 32.5 24.6 4.7 2.2

Logistic 41.6 31.3 4.5 1.8

Ricker 37.0 28.0 4.6 1.9

Cauchy BH 79 18.4 13.1 1.5 0.3

Logistic 26.1 18.4 1.4 1.1

Ricker 22.1 15.6 1.5 0.5

Laplace BH 89 25.9 18.2 2.6 0.5

Logistic 34.5 24.1 2.4 1.5

Ricker 30.1 21.1 2.5 0.6

100 Gaussian BH 90 54.0 48.4 9.3 8.1

Logistic 62.6 55.3 8.3 6.8

Ricker 58.4 51.9 8.8 7.5

Cauchy BH 89 40.6 33.7 11.1 7.4

Logistic 49.7 40.9 9.2 4.6

Ricker 45.1 37.3 10.3 6.0

Laplace BH 90 52.6 46.8 8.9 7.2

Logistic 61.3 53.8 7.6 5.4

Ricker 57.0 50.3 8.3 6.3

Each approximation was calculated for m equally spaced values from
c = 0 to c = c∗

all , the smallest value of c for which all four estimates
predicted extinction. Lowest values are in bold

larger than the mean dispersal distance, but the fatter tails
of the Cauchy distribution makes long-distance dispersal
events more likely, and the critical speed c∗ for persistence
is considerably higher than for kernels with thinner tails (see
Table 3). Figure 7 shows how estimates of the mean pop-
ulation at equilibrium based on GnS and In improve for
increasing n. Although GnS and In significantly underes-
timate N∗(x) for n = 0, these estimates are considerably
improved for n = 1, and quite respectable for n = 2. By
n = 3, N∗

I3
is almost indistinguishable from N∗(x).

Other types of asymmetry

So far, we have explored asymmetric dispersal primarily
in the context of climate change, examining Zhou and Kot
(2011)’s integrodifference model with shifted kernels, but
there are several other possible mechanisms through which
asymmetric dispersal can arise. Advection can act upon
individuals in the form of wind, ocean, or stream currents
(Lutscher et al. 2005), or the diffusion process itself may
be biased in a particular direction due to physiological or
morphological constraints (Levin et al. 2003). We will now
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Fig. 7 A comparison of estimates of the spatial averages of popula-
tion at equilibrium derived from GnS and In for increasing values of
n, assuming Beverton-Holt dynamics with R0 = 1.8, a shifted Cauchy
kernel with γ = 2, and L = 100. As n increases, GnS and In pro-
vide increasingly accurate estimates of N∗(x). The top panel includes
estimates based on S and Ŝ for comparison, but these estimates do not
change with n

demonstrate how the various metrics of dispersal success
can be applied to a dispersal kernel subject to advection.

Lutscher et al. (2005) used a partial differential equa-
tion modeling the individual movement of aquatic insects
in a stream habitat to derive a modified Laplace kernel that
accounts for advection. This asymmetric Laplace kernel is
given by

k(x, y) =
{

A exp(a1(x − y)), x ≤ y,

A exp(a2(x − y)), x > y,
(76)

where a1,2 = v/2D ± √
v2/4D2 + α/D, with D the dif-

fusion constant, v ≥ 0 the advection velocity, and α a
constant settling rate, and where A = a1a2/(a2 − a1) =
α/

√
v2 + 4αD, which ensures that k(x, y) integrates to 1.

The advection velocity v is analagous to the shift speed c in

the shifted Laplace, and the quantity
√

D
α

is analagous to the

shape parameter b. In a similar fashion, the shifted Gaus-
sian and shifted Cauchy can be seen as specific cases of the
more general formulae

k(x, y) = 1√
4παD

exp

(
− (x + αv − y)2

4αD

)
(77)

and

k(x, y) =
[

πγ

α

(
α2 +

(
x + αv − y

γ

)2
)]−1

, (78)

respectively, with 2αD = σ 2 and α = 1 (Reimer et al.
2016).

The average dispersal success of the asymmetric Laplace
is

S = A(e−a1L + a1L − 1)

La1
2

− A(a2L − ea2L + 1)

La2
2

, (79)

and the geometric symmetrization of S is

GS = 2A

B
+ 2A

B2L

(
e−BL − 1

)
, (80)

where B = a1−a2
2 . We note that Reimer et al. (2016) pro-

vides a formula for Ŝ for the asymmetric Laplace, which we
will not reproduce here.

0 1 2 3 4 5
0

1

2

3

4

5
(a)

IDE
S
S

GS

Net reproductive rate R0

C
rit

ic
al

 a
dv

ec
tio

n 
ve

lo
ci

ty
 v

*

0 0.5 1 1.5 2
0

5

10

15

20
(b)

Advection velocity v

C
rit

ic
al

 d
om

ai
n 

si
ze

 L
*

Fig. 8 Approximations of a the critical advection velocity v∗ of an
IDE with α = 1, D = 1, and L = 10, and b the critical domain size L∗
of an IDE with R0 = 1.8 and an asymmetric Laplace dispersal kernel
with α = 1, D = 1
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We may once again use these formulae to calculate the
critical domain size L∗ or the critical advection velocity v∗.
Substituting (79) into λS = R0S and setting λS = 1 yields

R0 = La1
2a2

2

A(e−a1L + a1L − 1) − A(a2L − ea2L + 1)
. (81)

Similarly, substituting (80) into λGS = R0GS and setting
λGS = 1 yields

R0 = B2L

2A
(
BL + e−BL − 1

) . (82)

Comparisons of estimates of L∗ and v∗ can be seen in Fig. 8.

Discussion

Dispersal is a complicated process. Dispersal takes place at
the scale of the individual, and is inevitably influenced by a
multitude of factors that affect the individual, such as habi-
tat heterogeneity in both space and time, and demographic
and environmental stochasticity. Modeling dispersal at the
scale of the individual necessitates tracking each individual
through time and space, but this method is often constrained
by computational power, and this limitation grows with
model complexity (Snyder 2003). In many situations, it
behooves us to focus our efforts on modeling emergent pop-
ulation properties that result from the aggregate effects of
individual dispersal. At the expense of granularity, modeling
cumulative population behavior greatly simplifies the task
of understanding how process affects pattern (Rahmandad
and Sterman 2008). Average dispersal success is one such
example of an emergent property, describing the aggregate
effects of dispersal within a population over the course of a
generation, and, asymptotically, population persistence.

In addition to the distinction between modeling the indi-
vidual vs. modeling the population is the contrast in using
numerical analysis or analytic methods to obtain results.
One of the benefits of the analytic approach is that an ana-
lytic solution can oftentimes more succinctly illuminate the
relationships between a model’s components. In the fortu-
itous (and admittedly rare) circumstance of possessing an
analytic solution to an IDE model, one can see precisely
how a population scales with the tweaking of a param-
eter or the value of a variable. Of course, many (if not
most) integrodifference equations do not lend themselves
kindly to analytic approaches, and numerical methods are
more common (Zhou and Kot 2011). Prudent and judicious
applications of analytic approximations, however, provide
us another way forward. By averaging the spatial aspects of
integrodifference equations, we found a family of approx-
imations of the dominant eigenvalue that determines pop-
ulation persistence. This sacrifice of spatial explicitness is

of little consequence if we are not concerned with where
individuals are in space, but simply that they are.

The benefits of such approximations are further evident
in the simplicity of equations such as

λmax ≈ R0GnS (83)

in Eq. 34. The integrodifference equation of Zhou and Kot
(2011) in Eq. 6 is a convolution of the growth and dispersal
processes, and (to paraphrase one of the authors) generates
a nasty eigenvalue problem (Kot and Phillips 2015). In con-
trast to this nastiness, Eq. 83 elegantly decouples the growth
and dispersal components, and in doing so, illuminates how
dispersal success and growth rate each relate to popula-
tion persistence. Moreover, this approximation appears to be
quite accurate.

We highlighted the fact that dispersal is, more often than
not, an asymmetric process. With asymmetric dispersal, the
aggregate effects of individual dispersal events appear as a
bias for the population to move in a certain direction, be it
in latitude, elevation, slope, along ocean currents, or stream
flow. Any such metric that hopes to meaningfully quantify a
population’s dispersal through space and time must account
for this asymmetry. We asserted that the original definition
of average dispersal success in Van Kirk and Lewis (1997)
does not adequately reflect the effects of asymmetric disper-
sal, but we explored how to address this shortcoming using
geometric symmetrization.

One of the benefits of average dispersal success S is that
it can be estimated experimentally through obervation of
population dispersal without explicit knowledge of k(x, y).
This is due to its simple ecological interpretation as the
proportion of individuals remaining after a single dispersal
event. We provided a similar interpretation of GS as the
proportion of individuals remaining after dispersal when the
population is at equilibrium. This suggests that GS can also
be estimated experimentally without knowledge of k(x, y)

through repeated observation of population dispersal events
over time, thus providing a practical method for inferring
persistence criteria from empirical data.

It is also worth acknowledging the importance of long-
distance dispersal events in determining the rates and
extents of spread of populations. Dispersal events are fre-
quently observed at distances and frequencies greater than
those predicted by a normal distribution, and kernels fit to
observation data are typically characterized by fatter tails
(Nathan et al. 2003). Kot et al. (1996) demonstrated how
long-distance dispersal can affect the rate of spread of a
population of fruit flies; fat-tailed kernels have likewise
been proposed as a solution to Reid’s Paradox, concern-
ing the disparity between predicted and observed rates
of tree repopulation in Northern Britain after the last Ice
Age (Clark et al. 1998). In our analysis, we demonstrated
that geometric symmetrization can be used to accurately
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describe the characteristics of an IDE with a Cauchy disper-
sal kernel, the prototypical example of a fat-tailed kernel.
Supporting similar conclusions in Lutscher et al. (2005),
Table 3 and Fig. 7 showed shifted kernels with higher kur-
tosis result in populations persisting at greater shift speeds,
because there is a higher probability that some individ-
uals will be able to disperse quite far, thus preserving
the population. These results suggest that the effects of
long-distance dispersal can indeed be captured by dispersal
success approximations.

There are, of course, some caveats to our methods that
are worth discussing. We used geometric symmetrization
to quantify the asymptotic persistence of a population, but
there are situations in which asymptotic behavior may be
misleading. Transient population dynamics can sometimes
imply extinction even when asymptotic dynamics suggest
persistence (Caswell 2007). Caution is therefore appropriate
when using geometric symmetrization to predict persis-
tence.

There are many types of population models that we have
not explored here in the context of geometric symmetriza-
tion. Integrodifference equations come in many different
flavors, including ones that account for Allee effects (Wang
et al. 2002), heterogeneous habitat (Van Kirk and Lewis
1997), and stage structure of populations (Harsch et al.
2014). Van Kirk and Lewis (1997) used the average disper-
sal success S to analyze an IDE on a network of patches and
Lutscher and Lewis (2004) applied S to a stage-structured
matrix population model; Reimer et al. (2016) recreated
similar models for both of these scenarios and compared
model performance to those using Reimer’s modified Ŝ. We
have not yet pursued these avenues with GS, but have no
reason to believe that it would not continue to outperform
S and Ŝ in a shifting habitat or in the presence of advec-
tion. These models and others would benefit from further
analysis.

Finally, our comparison of dispersal success characteri-
zations is by no means complete, as there are many different
ways to quantify dispersal success, and there are likely
many as yet undiscovered methods that are worth exploring.
Anticipating future efforts, we suggest that any meaningful
definition of dispersal success should necessarily have three
fundamental characteristics: a biological interpretation, a
mathematical justification, and adherence to the principle of
parsimony.

There are many examples in the literature of disper-
sal success being applied to ecological issues, but it is
worthwhile to revisit these studies in the context of climate
change. Fagan and Lutscher (2006) provide an eloquent
argument for the usefulness of the average dispersal suc-
cess in reserve network design, but Araújo et al. (2004)
demonstrated that reserve selection methods are inadequate
for ensuring the long-term persistence of species due to

the effects of climate change. Hughes et al. (2015) demon-
strated how dispersal success can model host-parasitoid
interactions in a fragmented habitat, but there is consider-
able evidence to suggest that species interactions can be
strongly influenced by climate change (Harrington et al.
1999; Hance et al. 2006). Cobbold et al. (2005) used the
average dispersal success to quantify how parasitism affects
the critical patch size of the forest tent caterpillar, but
Potapov and Lewis (2004) found that the critical patch size
of a species can increase as the rate of climate change
increases. Clearly, the effects of climate change should not
be ignored. Zhou and Kot (2011) demonstrated how climate
change can be represented with a shifted dispersal kernel,
and this framework continues to be developed and explored
(Harsch et al. 2014; Phillips and Kot 2015; Bouhours and
Lewis 2016).

Spatially explicit population models help elucidate the
relationship between a population and its environment, and
have proven to be quite useful for modeling biological
processes such as growth and dispersal. Average disper-
sal success helps describe the aggregate population-level
pattern of individual dispersal events, and geometric sym-
metrization enables us to describe the aggregate effects of
asymmetric dispersal with a much greater degree of con-
fidence in the approximations than other currently known
methods. Moving forward, we heartily encourage using this
method to incorporate asymmetric dispersal processes into
spatially explicit population models.
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